Power Contactors for Switching Motors

SIRIUS 3RT12 vacuum contactors,

3-pole, 110 ... 250 kW

Overview

UC operation

The contactors can be operated with AC (40 to 60 Hz) as well as with DC.
Two types of solenoid operation are available:

- Conventional operating mechanism, version 3RT12 . .- . A
- Solid-state operating mechanism, version 3RT12 \underline{N}

Withdrawable coils

For simple coil replacement, e. g. if the application is replaced, the solenoid coil can be pulled out upwards after the release mechanism has been actuated and can be replaced by any other coil of the same size.

Vacuum interrupters

In contrast with the 3RT10 contactors - the main contacts operate in air under atmospheric conditions - the contact gaps
of the 3RT12 vacuum contactors are contained in hermetically enclosed vacuum contact tubes. Neither arcs nor arcing gases are produced. The particular benefit of 3RT12 vacuum contactors, however, is that their electrical endurance is at least twice as long as that of 3RT10 contactors. They are therefore particularly well suited to frequent switching in jogging/mixed operation, e. g. in crane control systems.

Note:
Vacuum contactors are basically unsuitable for switching DC voltage.

Auxiliary contact complement

The contactors can be fitted with up to 8 lateral auxiliary contacts (identical auxiliary switch blocks from S2 to S12). Of these, no more than 4 are permitted to be NC contacts.

Technical specifications

1) For endurance of the main contacts see page $2 / 34$. 3) For electromagnetic compatibility (EMC) see page $2 / 31$.
2) For conductor cross-sections see page $2 / 53$.
[^0]| Contactor | Type | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Power Contactors for Switching Motors

SIRIUS 3RT12 vacuum contactors,

3-pole, 110 ... 250 kW

Contactor	Type Size	$\begin{aligned} & \text { 3RT12 } 64 \\ & \text { S10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 65 \\ & \text { S10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 66 \\ & \text { S10 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 75 \\ & \text { S12 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 76 \\ & \mathrm{~S} 12 \\ & \hline \end{aligned}$
Main circuit						
AC capacity						
Utilization category AC-1 Switching resistive loads						
- Rated operational currents $I_{\text {e }}$ - At $40^{\circ} \mathrm{C}$ up to 1000 V - At $60^{\circ} \mathrm{C}$ up to 1000 V	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 330 \\ & 300 \end{aligned}$			$\begin{aligned} & 610 \\ & 550 \end{aligned}$	
- Rated power for AC loads ${ }^{11}$ with p.f. $=0.95$ (at $60^{\circ} \mathrm{C}$) - At 415 V	kW	197			362	
- Minimum conductor cross-section for loads with I_{e} $\begin{aligned} & \text { - At } 40^{\circ} \mathrm{C} \\ & - \text { At } 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{mm}^{2} \\ & \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 185 \\ & 185 \end{aligned}$			$\begin{aligned} & 2 \times 185 \\ & 2 \times 185 \end{aligned}$	

Utilization categories AC-2 and AC-3

- Rated operational currents $I_{\text {e }}$
- Up to 1000 V
- Rated power for slipring or squirrel-cage motors at 50 and 60 Hz

- At 230 V
- At 415 V
- At 500 V
- At 690 V
- At 1000 V
Thermal load capacity 10 se
Power loss per conducting p
Utilization category AC-4 (for
- Rated operational current I_{e}

- Up to 690 V A
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz - At 415 V
kW
195
230

The following applies to a contact endurance of about 200000 operating cycles:

- Rated operational currents $I_{\text {e }}$

- Up to 690 V	A	97	115	140	175	215
- Up to 1000 V	A	68	81	98	123	151
- Rated power for squirrel-cage motors with 50 Hz and 60 Hz						
- At 230 V	kW	30	37	45	56	70
- At 415 V	kW	55	65	79	98	122
- At 500 V	kW	68	81	98	124	153
- At 690 V	kW	94	112	138	172	212
- At 1000 V	kW	95	114	140	183	217

Switching frequency

Switching frequency z in operating cycles/hour
Contactors without overload relays

- No-load switching frequency 2000
- Dependence of the switching frequency z ' on the operational current I^{\prime} and operational voltage U^{\prime} :
$z^{\prime}=z \cdot\left(I_{\mathrm{e}} / I^{\prime}\right) \cdot\left(400 \mathrm{~V} / \mathrm{U}^{\prime}\right)^{1.5} \cdot 1 / \mathrm{h}$

- AC-1	h^{-1}	800	750	700
- AC-2	h^{-1}	300	250	250
- AC-3	h^{-1}	750	750	750
- AC-4	h^{-1}	250	250	
Contactors with overload relays				
- Mean value	h^{-1}	60	250	

1) Industrial furnaces and electric heaters with resistance heating, etc. (increased power consumption on heating up has been taken into account).
2) According to IEC 60947-4-1.

For rated values for various start-up conditions see
"Protection Equipment" \longrightarrow "Overload Relays".

Contactor	Type Size	$\begin{aligned} & \text { 3RT12 } 64 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 65 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 66 \\ & \text { S10 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 75 \\ & \text { S12 } \end{aligned}$	$\begin{aligned} & \text { 3RT12 } 76 \\ & \text { S12 } \end{aligned}$
(6) and (14) rating						
Rated insulation voltage	V AC	600			600	
Uninterrupted current, at $40^{\circ} \mathrm{C}$, open and enclosed	A	330			540	
Maximum horsepower ratings ((\$) and (IL) approved values) - Rated power for induction motors at 60 Hz - At 200 V - At 230 V - At 460 V - At 575 V	hp hp hp hp	$\begin{aligned} & 60 \\ & 75 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 75 \\ & 100 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 125 \\ & 150 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 400 \\ & 500 \end{aligned}$
Short-circuit protection ${ }^{1)}$ - CLASS L fuse - Circuit breakers acc. to UL 489	kA A A	$\begin{aligned} & 10 \\ & 700 \\ & 500 \end{aligned}$	$\begin{aligned} & 18 \\ & 800 \\ & 700 \end{aligned}$	$\begin{aligned} & 18 \\ & 800 \\ & 900 \end{aligned}$	$\begin{aligned} & 18 \\ & 1200 \\ & 1000 \end{aligned}$	$\begin{aligned} & 30 \\ & 1200 \\ & 1200 \end{aligned}$
NEMA/EEMAC ratings - NEMA/EEMAC size - Uninterrupted current - Open - Enclosed - Rated power for induction motors at 60 Hz - At 200 V - At 230 V - At 460 V - At 575 V	hp A A hp hp hp hp	\qquad	- - - - - -	$\begin{aligned} & 5 \\ & 300 \\ & 270 \\ & 75 \\ & 100 \\ & 200 \\ & 200 \end{aligned}$	- - - - - -	6 600 540 150 200 400 400
Overload relays	Type	3RB20 66			3RB20 66	

Power Contactors for Switching Motors

SIRIUS 3RT12 vacuum contactors,

3-pole, 110 ... 250 kW

Selection and ordering data

AC/DC operation (40 Hz to $60 \mathrm{~Hz}, D C$)
Auxiliary and control conductors: screw terminals
Withdrawable coils
Integrated coil circuit (Varistor)
Main conductors: busbar connections

3RT12 7.
3RT12 7

Size	Rated data AC-2 and AC-3,	Up to				AC-1, $T_{u}: 40^{\circ} \mathrm{C}$	Auxiliary contacts, lateral		Rated control supply voltage U_{s}	Screw terminals	(i)
	Operational current $I_{\text {e }}$ up to	Rating $50 \mathrm{~Hz}$	induct d	n moto		Operational current $I_{\text {e }}$ up to	Vers			Order No.	
	1000 V	230 V	415 V	500 V	690 V	1000 V					
	A	kW	kW	kW	kW	A	NO	NC	V ACIDC		
Conventional operating mechanism											
S10	225	55	110	160	200	330	2	2	$\begin{aligned} & 23 \ldots 26 \\ & 110 . . .127 \\ & 220 . .240 \\ & 380 \ldots 420 \end{aligned}$	3RT12 64-6AB36 3RT12 64-6AF36 3RT12 64-6AP36 3RT12 64-6AV36	
	265	75	132	160	250	330	2	2	$\begin{aligned} & 23 \ldots 26 \\ & 110 \ldots 127 \\ & 220 \ldots 240 \\ & 380 \ldots 420 \end{aligned}$	3RT12 65-6AB36 3RT12 65-6AF36 3RT12 65-6AP36 3RT12 65-6AV36	
	300	90	160	200	250	330	2	2	$\begin{aligned} & 23 \ldots 26 \\ & 110 \ldots 127 \\ & 220 \ldots 240 \\ & 380 \ldots 420 \end{aligned}$	3RT12 66-6AB36 3RT12 66-6AF36 3RT12 66-6AP36 3RT12 66-6AV36	
S12	400	132	200	250	400	610	2	2	$\begin{aligned} & 23 \ldots 26 \\ & 110 \ldots 127 \\ & 220 \ldots 240 \\ & 380 \ldots 420 \end{aligned}$	3RT12 75-6AB36 3RT12 75-6AF36 3RT12 75-6AP36 3RT12 75-6AV36	
	500	160	250	355	500	610	2	2	$\begin{aligned} & 23 \ldots 26 \\ & 110 \ldots 127 \\ & 220 \ldots 240 \\ & 380 \ldots 420 \end{aligned}$	3RT12 75-6AB36 3RT12 76-6AF36 3RT12 76-6AP36 3RT12 75-6AV36	

For accessories, see page 2/176
For spare parts, see page 2/183

1) Built-in surge suppression: varistor circuit.
2) For EMC please refer technical details or please contact Sales Office.

Overview

IEC 60947-4-1, EN 60947-4-1 (VDE 0660 Part 102)
The 3TF68/69 contactors are climate-proof. They are finger-safe according to EN 50274. Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices (see Accessories and Spare Parts).

Function

Main contacts

Contact erosion indication with 3TF68/69 vacuum contactors
The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base. If the distance indicated by one of the double slides is $<0.5 \mathrm{~mm}$ while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters.

Auxiliary contacts

Contact reliability
The auxiliary contacts are suitable for solid-state circuits

- With currents $\geq 1 \mathrm{~mA}$
- And voltages from 17 V .

Surge suppression

Control circuit
Protection of coils against overvoltages:
AC operation

- Fitted with varistors as standard

DC operation
Retrofitting options:

- With varistors

If TF68/TF69 is to be used for DC operation, an additional reversing contactor is required; this is included in the scope of supply in the same packaging as the vacuum contactor.

Electromagnetic compatibility

3TF68/69 . . - . C contactors for AC operation are fitted with an electronically controlled solenoid operating mechanism with a high interference immunity.

| Contactor
 type | Rated control
 supply
 voltage U_{s} | Overvoltage
 type
 (IEC 60801) | Degree of
 severity
 (IEC 60801) | Overvoltage
 strength |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3TF68 44-.C... $110 \ldots 132 \mathrm{~V}$ Burst
 3TF69 44-.C.. 34
 Surge | 6 kV | 2 kV | | |
| | $200 \ldots 277 \mathrm{~V}$ | Burst
 Surge | 44 | 4 kV |
| | $380 \ldots 600 \mathrm{~V}$ | Burst
 Surge | 44 | 4 kV |
| | | | | 6 kV |

Note:

During operation in installations in which the emitted

 interference limits cannot be observed, e.g. when used for output contactors in converters, 3TF68/69 Q contactors without a main conductor path circuit are recommended (see description below).
Application

The standard 3TF68 C and 3TF69 . . - . C contactors with electronically controlled contactor mechanism, have high resistance to electromagnetic interference.

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

The 3TF68 . . - . Q and 3TF69 . . - . Q contactors have been designed for use in installations in which the AC control supply voltage is subject to very high levels of interference.
Causes for such interference can be, for example:

- Frequency converters which are operated nearby can cause periodic overvoltages at the control level of the contactors.
- High-energy pulses cause by switching operations and atmospheric discharges can cause interference on the control cables.
To reduce interference voltages caused by frequency converters, the manufacturer recommends the use of e.g. input filters, output filters, grounding or shielding in the installation.

Further measures that should be applied for overvoltage damping:

- Feeding the contactors using control transformer according to EN 60204 - rather than directly from the network
- Use of surge arresters, if required

For operating conditions where there are high interference voltages and no measures that reduce interference voltage coupling to the control voltage level have been taken, use of 3TF68 . . - . Q and 3TF69 . .- . Q contactors is highly recommended.

Version

The magnetic systems of the 3TF68 . . - . Q and 3TF69 . . - . Q contactors for AC operation are equipped with rectifiers for DC economy circuit.

A 3TC44 reversing contactor with a mounted series resistor is used to switch to the holding excitation.

The reversing contactor can be fitted separately. The reversing contactors is connected to the 3TF6 main contactor by means of a one-meter connecting cable with plug-in connectors.

Connection

Control circuit

The rectifier bridge is connected to varistors for protection against overvoltages. The built-in rectifier bridge affords sufficient protection for the coils.

Main circuit

As standard 3TF6 contactors with integrated RC varistors.

Protection of the main current paths

An integrated RC varistor connection for the main current paths of the contactors dampens the switching overvoltage rises to safe values. This prevents multiple restriking.
The operator of an installation can therefore rest assured that the motor winding cannot be damaged by switching overvoltages with steep voltage rises.
Important note: The overvoltage damping circuit is not required if 3TF68/69 contactors are used in circuits with DC choppers, frequency converters or speed-variable operating mechanisms, for example. It could be damaged by the voltage peaks and harmonics which are generated. This may cause phase-to-phase short-circuits in the contactors.
Solution: Order special contactor version without overvoltage damping. The Order No. must include "-Z" and the order code "A02". Without additional charge.

Power Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Technical specifications

Contactor	Type	3TF68 and 3TF69
Rated data of the auxiliary contacts		Acc. to IEC 60947-5-1 (VDE 0660 Part 200)
Rated insulation voltage U_{i} (degree of pollution 3)	V	690
Continuous thermal current $I_{\text {th }}=$ Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-12	A	10
AC load		
Rated operational current $I_{\mathrm{e}} / \mathrm{AC}$-15/AC-14 for rated operational voltage U_{e}		$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 6 \\ & 5.6 \\ & 4 \\ & 3.6 \\ & 2.5 \\ & 2.5 \\ & 2.3 \\ & \hline \end{aligned}$
DC load		
Rated operational current $I_{\mathrm{e}} / \mathrm{DC}$-12 for rated operational voltage U_{e}	$\begin{array}{rl} 24 \mathrm{~V} & \mathrm{~A} \\ 60 \mathrm{~V} & \mathrm{~A} \\ 110 \mathrm{~V} & \mathrm{~A} \\ 125 \mathrm{~V} & \mathrm{~A} \\ 220 \mathrm{~V} & \mathrm{~A} \\ 440 \mathrm{~A} & \mathrm{~A} \\ 600 \mathrm{~V} & \mathrm{~A} \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 3.2 \\ & 2.5 \\ & 0.9 \\ & 0.33 \\ & 0.22 \end{aligned}$

Rated operational current $I_{e} / D C-13$ for rated operational voltage U_{e}

24 V	A	10
60 V	A	5
110 V	A	1.14
125 V	A	0.98
220 V	A	0.48
440 V	A	0.13
600 V	A	0.07

CSA and UL rated data for the auxiliary contacts

Contact erosion indication with 3TF68 and 3TF69 vacuum

contactors

The contact erosion of the vacuum interrupters can be checked during operation with the help of 3 white double slides on the contactor base.

If the distance indicated by one of the double slides is < 0.5 mm while the contactor is in the closed position, the vacuum interrupter must be replaced. To ensure maximum reliability, it is recommended to replace all 3 vacuum interrupters.

Power Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW
Endurance of the main contacts
Contactor Type

3TF68 and 3TF69 contactors
Legend for the diagrams:
$P_{\mathrm{N}}=$ Rated power for squirrel-cage motors at 400 V
$a=$ Breaking current
$l_{\mathrm{e}}=$ Rated operational current

1) To easily replace the laterally mounted auxiliary switches it is recommended to maintain a minimum distance of 30 mm between the contactors.
2) If mounted at a 90° angle (conducting paths are horizontally above each other), the switching frequency is reduced by 80% compared with the normal values.
3) See endurance of the auxiliary contacts.
4) Test conditions according to IEC 60947-4-1

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

1) At 24 V DC; for further voltages, deviations of up to $\pm 10 \%$ are possible.
2) Values in brackets apply to contactors with reduced operating times.
3) Max. permissible rated operational current le/AC-4 = Ie/AC-3 up to 500 V , for reduced contact endurance and reduced switching frequency.
4) For deviating inrush current factors x, the power must be recalculated as follows: $P_{x}=P_{\text {n30 }} \cdot 30 / x$.

Contactor	Type Size		$\begin{aligned} & 3 \text { TF68 } \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \text { 3TF69 } \\ & 14 \\ & \hline \end{aligned}$
Main circuit				
AC capacity				
Short-time current carrying capacity ($5 . .330$ s)				
- CLASS 5 and 10		A	630	820
- CLASS 15		A	630	662
- CLASS 20		A	536	572
- CLASS 25		A	479	531
- CLASS 30		A	441	500
Thermal current-carrying capacity 10-s-current ${ }^{1)}$		A	5040	7000
Power loss per conducting path at le/AC-3/690 V		W	45	70
Switching frequency				
Switching frequency z in operating cycles/hour				
- Contactors without overload relays	No-load switching frequency AC	1/h	2000	1000
	No-load switching frequency DC	1/h	1000	1000
	AC-1	1/h	700	700
	AC-2	1/h	200	200
	AC-3	1/h	500	500
	AC-4	1/h	150	150
- Contactors with overload relays (mean value)		1/h	15	15
Conductor cross-sections				
- Screw terminals	Main conductors:		(1) Screw terminals	
	- Busbar connections			
	- finely stranded with cable lug	mm^{2}	$50 . .240$	50... 240
	- stranded with cable lug	mm^{2}	70 ... 240	$50 . .240$
	- solid or stranded - connecting bar (max. width)	AWG	2/0 ... 500 MCM	2/0 ... 500 MCM
		mm	50	60 ($U_{\text {e }} \leq 690 \mathrm{~V}$)
				50 ($U_{\text {e }}>690 \mathrm{~V}$)
	- Terminal screw		$\mathrm{M} 10 \times 30 \mathrm{M} 12 \times 40$	
	- tightening torque	Nm	$14 . .24$ (124 ... $210 \mathrm{lb} . \mathrm{in}$)	$20 . .35$ (177 ... $310 \mathrm{lb} . \mathrm{in}$)
	- With box terminal ${ }^{2)}$			
	- connectable copper bars			
	- width	mm	$15 . .25$	15... 38
	- max. thickness	mm	1×26 or 2×11	1×46 or 2×18
	- terminal screw		A/F 6 (hexagon socket)	A/F 8 (hexagon socket)
	- tightening torque	Nm	$25 . .40$ (221 ... $354 \mathrm{lb} . \mathrm{in}$)	$35 . .50$ (266 ... $443 \mathrm{lb} . \mathrm{in})$
	Auxiliary conductors:			
	- Solid	mm^{2}	$2 \times(0.5 \ldots 1)^{3)} / 2 \times(1 \ldots 2.5)^{3)}$	
	- Finely stranded with end sleeve	mm^{2}	$\left.2 \times(0.5 \ldots 1)^{3)} / 2 \times(0.75 \ldots 2.5)^{3}\right)$	
	- Pin-end connector to DIN 46231	mm^{2}	$2 \times(1 \ldots 1.5)$	
	- Solid or stranded	AWG	$2 \times(18 \ldots 12)$	
	- Tightening torque	Nm	0.8 ... 1.4 (7 ... $12 \mathrm{lb} . \mathrm{in}$)	
CSA and UL. rated data				
Rated insulation voltage		V AC	600	600
Uninterrupted current	Open and enclosed	A	630	820
Maximum horsepower ratings (CSA and UL approved values)				
Rated power for induction motors at 60	Hz at 200 V	hp	231	290
	230 V	hp	266	350
	460 V	hp	530	700
	575 V	hp	664	860
NEMA/EEMAC ratings				
SIZE		hp	6	7
Uninterrupted current	Open	A	600	820
	Enclosed	A	540	810
Rated power for induction motors at 60	Hz at 200 V	hp	150	-
	230 V	hp	200	300
	460 V	hp	400	600
	575 V	hp	400	600
Overload relays	Type		3RB12	
	Setting range	A	200... 820	

For short-circuit protection with overload relays see Protection Equipment: Overload Relays.

1) According to IEC 60947-4-1.
2) See Accessories and Spare Parts.
3) If two different conductor cross-sections are connected to one clamping point, both cross-sections must lie in the range specified. If identical crosssections are used, this restriction does not apply.

Power Contactors for Switching Motors

3TF6 vacuum contactors, 3-pole, 335 ... 450 kW

Selection and ordering data

Auxiliary and control conductors: screw terminals Main
conductors: busbar connections
Size 14
IEC 60947-4-1, EN 60947-4-1 (VDE 0660 Part 102)
The 3TF68/69 contactors are climate-proof.
They are finger-safe according to EN 50274.
Terminal covers may have to be fitted onto the connecting bars, depending on the configuration with other devices (see Accessories and Spare Parts on page 2/56).

3TF68

Rated data							Auxiliary contacts		Rated control	Screw terminals	(1)
Operational	Rating of induction motors at 50 Hz and					AC-1, Operational current $I_{\text {e }}$ up to (at $40^{\circ} \mathrm{C}$)	Vers			Order No.	
$\begin{aligned} & \text { current } I_{\mathrm{e}} \text { up to } \\ & 690 \mathrm{~V} \end{aligned}$	230 V	415 V	500 V	690 V	1000 V						
A	kW	kW	kW	kW	kW	A	NO	NC	V		
AC operation ${ }^{\text {1) 2) }} \cdot 50 / 60 \mathrm{~Hz}$											
630	200	335	434	600	-	700	4	4	$\begin{aligned} & 110 \ldots 132 \mathrm{AC} \\ & 200 . \ldots 240 \mathrm{AC} \\ & 380 \ldots 460 \mathrm{AC} \end{aligned}$	3TF68 44-0CF7 3TF68 44-0CM7 3TF68 44-0CQ7	
820	260	450	600	800	-	910	4	4	$\begin{aligned} & 110 \ldots 132 \mathrm{AC} \\ & 200 . \ldots 240 \mathrm{AC} \\ & 380 \ldots 460 \mathrm{AC} \end{aligned}$	3TF69 44-0CF7 3TF69 44-0CM7 3TF69 44-0CQ7	
DC operation - DC economy circuit											
630	200	335	434	600	-	700	3	3	$\begin{aligned} & 24 \mathrm{DC} \\ & 110 \mathrm{DC} \\ & 220 \mathrm{DC} \end{aligned}$	3TF68 33-1DB4 3TF68 33-1DF4 3TF68 33-1DM4	
820	260	450	600	800	-	910	3	3	$\begin{aligned} & 24 \mathrm{DC} \\ & 110 \mathrm{DC} \\ & 220 \mathrm{DC} \end{aligned}$	3TF69 33-1DB4 3TF69 33-1DF4 3TF69 33-1DM4	
AC operation $\cdot 50 / 60 \mathrm{~Hz}$. Version for AC controls which are subject to strong electromagnetic interference											
630	200	335	434	600	-	700	3	3	$\begin{aligned} & 110 \ldots 120 \mathrm{AC} \\ & 220 \ldots 240 \mathrm{AC} \\ & 380 \ldots 420 \mathrm{AC} \end{aligned}$	3TF68 33-1QG7 3TF68 33-1QL7 3TF68 33-1QV7	
820	260	450	600	800	-	910	3	3	$\begin{aligned} & 110 \ldots 120 \mathrm{AC} \\ & 220 . \ldots 240 \mathrm{AC} \\ & 380 \ldots 420 \mathrm{AC} \end{aligned}$	$\begin{aligned} & \text { 3TF69 33-1QG7 } \\ & \text { 3TF69 33-1QL7 } \\ & \text { 3TF69 33-1QV7 } \end{aligned}$	

For accessories, see page $2 / 188$
For spare parts, see page 2/191

1) Built-in surge suppression: varistor circuit.
2) For EMC please refer technical details or please contact Sales Office.

3TF68/69 for 1000 V application is available on request.

[^0]: 4) Test conditions according to IEC 60947-4-1.
